Real-Time Object Detection for Unmanned Aerial Vehicles based on Cloud-based Convolutional Neural Networks
نویسندگان
چکیده
Real-time object detection is crucial for many applications of Unmanned Aerial Vehicles (UAVs) such as reconnaissance and surveillance, search-and-rescue, and infrastructure inspection. In the last few years, Convolutional Neural Networks (CNNs) have emerged as a powerful class of models for recognizing image content, and are widely considered in the computer vision community to be the de facto standard approach for most problems. However, object detection based on CNNs is extremely computationally demanding, typically requiring high-end Graphics Processing Units (GPUs) that require too much power and weight, especially for a lightweight and low-cost drone. In this paper, we propose moving the computation to an off-board computing cloud. We apply Regions with CNNs (R-CNNs), a state-of-the-art algorithm, to detect not one or two but hundreds of object types in near real-time.
منابع مشابه
Provide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملLow Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring
In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...
متن کامل2017 Formatting Instructions for Authors Using LaTeX
Deep convolutional and recurrent neural networks have delivered significant advancements in object detection and tracking. However, current models handle detection and tracking through separate networks, and deep-learning-based joint detection and tracking has not yet been explored despite its potential benefits to both tasks. In this study, we present an integrated neural model called the Recu...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کامل